Ping Pong on Cat ( 0 ) Cube Complexes

نویسنده

  • MICHAH SAGEEV
چکیده

Let G be a group acting properly and essentially on an irreducible, non-Euclidean finite dimensional CAT(0) cube complex X without a global fixed point at infinity. We show that for any finite collection of simultaneously inessential subgroups {H1, . . . , Hk} in G, there exists an element g of infinite order such that ∀i, 〈Hi, g〉 ∼= Hi ∗ 〈g〉. We apply this to show that any group, acting faithfully and geometrically on a non-Euclidean possibly reducible CAT(0) cube complex, has property Pnaive i.e. given any finite list {g1, . . . , gk} of elements from G, there exists g of infinite order such that ∀i, 〈gi, g〉 ∼= 〈gi〉 ∗ 〈g〉. This applies in particular to the Burger-Mozes simple groups that arise as lattices in products of trees. The arguments utilize the action of the group on the boundary of strongly separated ultrafilters and moreover, allow us to summarize equivalent conditions for the reduced C∗-algebra of the group to be simple.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups acting on CAT(0) cube complexes

We show that groups satisfying Kazhdan’s property (T) have no unbounded actions on nite dimensional CAT(0) cube complexes, and deduce that there is a locally CAT(−1) Riemannian manifold which is not homotopy equivalent to any nite dimensional, locally CAT(0) cube complex. AMS Classi cation numbers Primary: 20F32 Secondary: 20E42, 20G20

متن کامل

Stallings’ folds for cube complexes

We describe a higher dimensional analogue of Stallings’ folding sequences for group actions on CAT(0) cube complexes. We use it to give a characterization of quasiconvex subgroups of hyperbolic groups that act properly co-compactly on CAT(0) cube complexes via finiteness properties of their hyperplane stabilizers.

متن کامل

From Wall Spaces to Cat(0) Cube Complexes

We explain how to adapt a construction of M. Sageev’s to construct a proper action on a CAT(0) cube complex starting from a proper action on a wall space.

متن کامل

Cubulating spaces with walls

The elegant notion of a space with walls was introduced by Haglund and Paulin [6]. Prototypical examples of spaces with walls are CAT(0) cube complexes, introduced by Gromov in [5]. The purpose of this note is to observe that every space with walls has a canonical embedding in a CAT(0) cube complex and, consequently, a group action on a space with walls extends naturally to a group action on a ...

متن کامل

Isometries of Cat (0) Cube Complexes Are Semi-simple

We show that an automorphism of an arbitrary CAT (0) cube complex either has a fixed point or preserves some combinatorial axis. It follows that when a group contains a distorted cyclic subgroup, it admits no proper action on a discrete space with walls.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016